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DESCRIPTION AND PURPOSE

Potential application of the stable laws has long been hindered by

the unavailability of generally available, well-documented algorithms.

This paper removes this deficiency by presenting an algorithm for estimation

of stable law parameters, with the goal of facilitating the application of

stable laws in modeling and inference frameworks. The stable laws have

steadily increased in importance to the statistical community since the

paper of Mandelbrot (1963). Their role as the only laws possessing

domains of attraction makes the stable laws an appealing probabilistic

model, and they are capable of modeling a wide range of skewness, heavy

tailedness, and central peakedness. Procedures for estimation of stable

law parameters have been described by Mandelbrot (1963), DuMouchel (1971),

Fama and Roll (1971), Paulson, Holcomb, and Leitch (1975), Koutrouvelis

(1980,1981), Feuerverger and McDunnough (1981a,1981b), and Brockwell and

Brown (1981). Because of the intractability of stable densities, attention

has centered in recent years on Fourier-based procedures, using the

empirical characteristic function. Such procedures should have an adap-

tive nature (Paulson, Holcomb, and Leitch, 1975; Paulson, Delehanty, and

Brothers, 1982; Paulson and Delehanty, 1982).

-We presentian iterative and adaptive algorithm for joint estimation

of stable law parameters, using the empirical characteristic function.

The algorithm is flexible in that either of two procedures may be selected,

and subsets of the parameters may be allowed to vary freely, with others

constrained or held constant. '\ The statistical rationale for the procedures

is described in the companion paper by Paulson and Delehanty (1982). ' The

algorithm may also be used to provide informal estimates of the parameters
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of the stable law to which a sample distribution is attracted.

THEORY AND NOTATION

Nondegenerate stable random variables X may be defined by the

characteristic function

O(u) E(expiuX) = exp{iuu-laul1(l+iB sgn(u) x(u,o))}, (1)

where i2  -, 0 < a 5 2,II5 1, a and

tan ff- , a$1

x(u,a) = 2 (2)2 log lu l , C=1.

Here a, the characteristic exponent, is a measure of heavy tailedness

and central peakedness, 8 is a skewness measure, a is a scale parameter,

and U is a location parameter unless (ao=, a#0), when the function of

location parameter is assumed by j + 2 Bologo. The only stable laws

whose densities are expressible in closed form are the Gaussian (a=2,
2

0=0), the Cauchy (a=1,8=0), and the reciprocal of a X variate on one

degree of freedom (= ,8-1).

Let X ,... ,Xn be a stable random sample. The empirical character-

istic function is

Cn(U n n I  exp(iuXj) (3)

j=1

Let Ou) = Re 0(u) + Im 0(u), 4n(u) = Re *n(u) +Im Cn(u). Estimators

interior to the parameter space can be viewed as zeros of the systems

Formulation A

I e Wi~u) n Im(u j))w 1 0, (4~)
j=1
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or

Formulation B

q q 30~(u
I Z Kj k (*(u) - *n(uk))wj wk = 0( 5)

j=1 k1l

for 6 =a,S,a,V. The grid {u j ljl...,q} is symmetric about zero but does

not include the origin, and Kjk denotes the j,k element of the inverse

matrix (Kjk), where

Kjk = n cov(n (uj), 40n(uk))

= Re *(uj-uk ) + Im *(uj+uk) - *(uj) *(uk). (6)

The weights {w1Ij=1,... ,q} also depend on the parameters I,a,,us, and

are described in the Numerical Method section. Both Formulations A and
2

B represent modified, weighted X minimum procedures, corresponding

to the respective objective functions

q
A: Sn = l (*(u) - *n(uj)) 2 w, (7)

j=1) wi
q q

B: Qn = I E (u.) -, 4 (uj)) wj Kj k wk(,(u)-,n(u)).
J-I kl1

(8)

The following points are critical for practical application:

1) The shapes of * and *n are highly dependent on location and

scale parameters, and so should be standardized;

2) The estimators are improved by making the gridpoints and weights

depend on a and B;
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3) Since the procedures are adaptive (tu},{w.} and (Kjk} depend

on unknown parameters), algorithms must be iterative;

4) Since a, 0 and a are always constrained, each iteration in-

volves solution of a nonlinear optimization problem with

variable bound constraints.

Our procedures may therefore be summarized as follows, where a tilde

indicates estimators, their values, or adaptively standardized

quantities.

Begin with initial guesses for the parameters. At each iteration,

compute and save (u.}, {w.}, possibly {KJk}, and standardized empirical

characteristic function values {(n (Uj)}, based on the latest (&,J). The

objective Sn or Qn is then minimized (an "optimization subproblem"),

and cumulative location and scale estimates (Z,i) are updated. Iteration

stops when values of a and V minimizing Sn or Qn are acceptably close to

unity and zero, respectively.

Estimators whose values are not on a bound are asymptotically multi-

variate Gaussian distributed. The asymptotic covariance matrices of

the estimators are derived in Paulson and Delehanty (1982). The basic

formula is

H-1 -1 i=AB 9
H. v. H. , i- A,B. (9)

. -. Yi ti '

There are two particularly appealing ways to approximate [. In

"approximation (i)", expectations are approximated from the data: 1 is

computed by differencing the objective at the final optimum, and

VA = 4DTKD, (10)
-A -1w -1

VB 4=DTKK(w)K-D. (11)

- ~ ... ... ~ ..
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Here
Dj0 3 i(12)

8 ranging over the parameters free of bounds,

- n

K nk = n -  Z (<u - cosu.x - sinujxm)(<uk) - cosUkim- sinukx ) (13)

and

-(w) -
K ~K w w (14)

-jk -jk j k

By location and scale invariance, (a,) are set to (1,0) during these

computations, and Z scaled. In "approximation (ii)", expectations are

calculated analytically, so K replaces K in (10), (11), and (14),

and factors of 2 are omitted. The expected Hessian has elements

H = q 3;t(u 3i S( ) j (
HAee, = ae 55 (,

j=1

%ee' = TK- 1,

where 8 and 8' range over free parameters.

To analyze domains of attraction, we use what we refer to as the

k-sum procedure. If k is a positive integer, the power

k k n n
*(u) = n - k  ... I exp(iu(x. + ... + x. )) (16)

j1=1 jk=1  1k

is the characteristic function corresponding to the kth convolution

power of the empirical distribution function Fn (x), and can be inter-

preted as empirical characteristic function of all possible k-sums

<x +.+ x 4 }, sampling with replacement from F (x). We add real and
-k

imaginary parts and standardize, giving ;n(u), say, and estimate

k' ks k) for different values of k. If the sample distribution is

L/.
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attracted to a stable law with parameters (~8aiithe sequence of

normalized estimators k9 aK ~k k/kl/&ck, k /k), for reasonable values of

k, should approach (a,8,a,pi). In particular, a rapid rise in [&k may

indicate that a stable model is not appropriate, a possible alternative

being a mixture of finite variance components with differing scale para-

meters.

The k-sum procedure can thus be used in a sensitivity analysis, to

examine how well the data support the stability assumption. Other possible

tools for sensitivity analysis are varying the mechanism (to be described

below) underlying the weights {w.} , and comparing approximations Wi

and (ii) of the estimated asymptotic covariance matrix, provided n is

large enough for approximation (i) t3 be accurate.

NUMERICAL METHOD

The main computational task required is solution of bound-constrained

nonlinear optimization problems. Although Formulations A and B lead to

nonlinear least squares problems, current algorithms for nonlinear least

squares do not allow constraints (Hiebert, 1981). Numerical Algorithms

Group (NAG) subroutine E04KBF (NAG, 1981) is used for optimization.

E04KBF is a quasi-Newton procedure, requiring an objective function and

analytical first partial derivatives. It is substantially faster than

the gradient projection routine used by Paulson, Holcomb and Leitch (1975),

although the latter is very reliable. The other conplicated numerical

procedure required is inversion of a positive definite symmetric matrix

(K, H or H), for which NAG subroutine FO1ABF is used. Various NAG utility

procedures are also used, see Auxiliary Algorithms. The use of NAG
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procedures inhibits transportability in that the algorithm, as presented,

is only usable at installations having the NAG Library. However, listings

of rapid, high-quality algorithms for constrained optimization have not

appeared in the literature (see Chambers, 1977, pp. 159-160; the situation

described there has not improved). Given that E04KBF is used, reliance

on additional NAG Library procedures is expedient.

We require a minimum of q=20 gridpoints {u. }, and prefer q=20 or

40, since they are reasonable values in practice, and have been tested

extensively. Only the positive gridpoints are explicitly required, due

to symmetry of the grid and the Hermitian property of characteristic

functions. They are computed as follows: An endpoint U is chosen as

3, 1.8; 3.3, 1.8 > a - 1.7; 3.6, 1.7 > & • 1; 5, &=1; 4, 1 > a .9;

5, .9 > a a .8; 7, .8 > & > .6; 10, a<.6. An inner number I of points

is selected close to the origin: I=2 if q<30 and 3 if qa30, 1 being sub-

tracted if &S.5. The inner I points are spaced as follows: if &>1,

the "a-optimal" values of Feuerverger and McDunnough (1981b) for the

nearest (larger) a are used; if &S1, the first I points giving q/2 equal
*3 *2

increments of log (u + a ) between 0 and U are multiplied by k a

(a = max(G, .3)). The remaining points are logarithmically spaced out

to U: if &>1, the function log (1 + u/2) is used, and if & S, log(u + a*3

is u.ed. This rather complicated ad hoc scheme was developed through

graphical inspection of (u) and n (u), comparisons of asymptotic effic-

iencies, and parameter estimation for real and simulated data. No

claims of optimality are made, but the scheme provides high efficiencies

if efficiency is preferred, or good matches between , and n if curve

fitting is preferred. The point of stratified and logarithmic spacing is
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to emphasize u values near the origin. Details when &51 reflect the

fact that *(u) has a sharp cusp near the origin, but decays slowly.

The stepwise nature of the scheme is not deemed a serious drawback.

The weights {w.} are computed as follows:
3

Under Formulation A,

10(uj)I 2X"  exp(-2X lu j l
j K (u,u) K (u.,u.)

and under Formulation B,

w. = 10(u.)1" exp(-XuiuI a (18)

where X and r are supplied by the user, 0 5 T 5 1,

K (u,u) = 1 + T(Im ;(2u) - P2(u)), (19)

and A is recommended nonnegative. Rationale for these weights, and

some corresponding asymptotic efficiencies, are in Paulson and Delehanty

(1982). We recommend T=1 under Formulation A. Under Formulation B,

it is convenient to let T>0 represent a fraction of the average diagonal

element by which to inflate K, giving a matrix we shall call A. We

have only found this inflation necessary if a is very close to two,

when T =0.01 suffices.

To use the quantity X as a tool for sensitivity analysis, we inter-

pret it as a damping factor, lessening the effects of noise in Pn (u) for

larger lul. If the data are truly stable and the sample size is fairly

large (say 150 or more), estimates should change little as A varies,

say, from 0 to 1. Large discrepancies in the estimates for different

values of A indicate problems with the data or the stable assumption or

both. It may not be easy to isolate the difficulty but further study is
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definitely required.

For the k-sum procedure, k>l, the situation regarding gridpoints

and weights changes. Tests so far indicate that when &>I, Formulation A,

with gridpoints equispaced from 0 to U, gives better results than

"efficient configurations" used for k=1. Reasons for this are unclear.

A possible explanation is that when &>1 and k>1, k(u) is so smooth that

estimation is practically equivalent to deterministic curve fitting, and

implicit or explicit emphasis on gridpoints near the origin neglects

important curvature for large Jul. Accordingly, when k>1 and &>1, we

equispace gridpoints and set all weights to 1. When a nl, Ck(u) has a

sharp cusp near the origin and remains a jagged curve as k increases,

due to the presence of very large observations. In this situation, we

set all weights to 1 and use basically the same gridpoint scheme as when

k=1, omitting only multiplication of the inner points by a"2/4. In either

case, Formulation A is recommended.

An important question is how large k may be taken. Equation (16)

suggests that we cannot expect to take k arbitrarily large. There seems

to be a tendency for a to increase and a to drift if k is too large,

though this may be partially due to suboptimal gridpoints or weighting.

It appears that when n is large, say 500 or more, k may safely be taken

up to 20. Care is required for smaller n, and when a is small or very

near two.

Implicit standardization is carried out as follows. Let k be a

positive integer, and ( ,s) cumulative location and scale estimates.

Then
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Snk(u%) - k(c0 T sin (20)

where

= 1n(Uj/) )l k  (21)
n k

and

Yjk = k arg(US) -(us (22)

No problems of principal values arise, and complex arithmetic is not

used. The FORTRAN mathematical library function ATAN2 computes argu-

ments.

The estimator & may be bounded in (closed) subintervals of

[6,1-e], C1,11, or C1+e,2] unless a is fixed at 0, when [6,2] is possible

(6 and e are small positive numbers), while ; may be bounded in sub-

intervals of E-1,1]. Estimators ; and -p may be constrained arbitrarily

inC6,-) and (-a,), respectively, unless a is fixed at 1 and B is not

fixed at 0, when V cannot be constrained. Bounds on a and u are internally

set for use in subproblems. These bounds must be wide enough to allow

the "true values" to be found, but narrow enough to deter straying into

undesirable regions, particularly a-, Jul--. The ad hoc bounds of

C-5,5] for v and CO.2,5] for a work well in practice. If & or i are

initially constrained, their internal bounds are adaptively modified, see

the Algorithm for description.

Initial guesses for the parameters are required. We do not find

their specification particularly important, provided & is on the correct

side of 1 in the nonsymetric case. We have used the median and semi-

interquartile range as guesses for 11 and ;, and averages of upper and

lower bounds for & and B. If is anticipated less than 1.2, say, it is

p
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worthwhile to put more effort into initial guesses, since fewer iter-

ations will be required (the semi-interquartile range will overestimate

a, and if a is near but different from 1, the median is nearer

Z 8 a log a than i).

Convergence is judged by a tolerance on subproblem solutions,

max(la(m)-lIu(m)I), (or max (m) - cm-1)J, 18(m) - (m-1)1) if

and -p are fixed), with a maximum allowable number of iterations.

Attainable tolerances depend on n, but more strongly on the underlying

parameters. If & is near two, in is very smooth and stringent tolerances

such as 10 -6 may be attained. If &S1.2, in has many small oscillations

due to large observations, and, especially for smaller samples, it may

be preferable to terminate after a fixed number of iterations. Good

estimates are generally obtained within five iterations, fewer if initial

guesses are good; if stringent tolerances are required, or for difficult

problems (skewed distributions with 0.9!a%1.1) more may be required.

Convergence is typically slower under Formulation B, since the weighting

mechanism is more complicated.

Approximation of asymptotic covariance matrices requires little

description. We note that for approximation (i) and the q values we use,

it is faster to define a vector

(i(u - cos uij - sin u ..- (U) - cos u - sin

and cumulate

n " I  ( CDT 6.) CDTd)T (2")
j=1 j

under Formulation A, or
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S4n- 1 n (DTA-ISa)(DTA- 1 )T (25)

j=1 J

under Formulation B, than to cumulate K. The matrix D is computed by

the function/gradient subroutine. E04KBF returns an approximate Hessian,

which could conceivably be used for A in approximation (i). Rather

often, however, EO4KBF will terminate with its failure indicator set to

3 and the Hessian set to the identity matrix, even though the optimum

may be reliable. It is therefore simpler to compute H by differencing.

The following procedures is used: Set an initial Hessian to 0, and the

-3steplength to 10 . Successively divide the steplength by v'Th and approx-

imate the Hessian by differencing; three-point differencing for the

diagonal, and four-point for off-diagonal elements. Compare elements of

successive approximatiorsby maximum relative or absolute differences,

according as the element of the latest approximation exceeds 1 in absolute

value or not. A tolerance of 10-  is used for this convergence criterion.

If convergence has not occurred with a steplength of 10 , the result

with steplength 10-4 is used.

Approximation (i) of the asymptotic covariance matrix is rather

expensive to compute. It should not be computed for smaller sample sizes,

as it implicitly involves estimation of q( q+l) covariances.

Following is an informal description, in Algorithm form, of the

basic routine STABLE. Approximate asymptotic covariance matrices may

also be computed, but this presents no logical difficulties, so is omitted.
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Algorithm

Produces estimates for k-sums (kal), based on a sample

(Xl, ... 9x n).

Input parameters: k, n, (x.}, q, X, r, Formulation (A or B),

convergence tolerance e, maximum number M of iterations, and flags

whether a and 4 are constrained.

Input/output parameters: , are initial guesses on entry

and estimates on exit, (%,BL,cL,hL) and (auSuauuu) are lower bounds.

The (a,v) bounds are changed, but restored on exit. In the special case where
2

is fixed at 1, , on entry, is the initial guess for location 4 + 2 Baloga.

Auxiliary quantities Z and s are cumulative location and scale

estimates. Entry values of (aL,au,ILu) are stored in (bl,b2 ,b3 ,bQ. On

entry and exit, (;, ,u,a LUL'Uu ) are normalized.

S1 [Initialize.]

Seti-o k , s - k a, m *0.

Save (bl,b 2,b3,b) 4 (aL,auUL,9u).

if u is unconstrained then set u - 5, 5;

else if u is fixed then set UL U 0;

else set L *- kuLV Uu - ku"

if & is unconstrained then set aL - 0.2, au 4-

else if & is fixed then set aL 4 a 1;

else set aL  k a L, au k au"

ii
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S2 [Looping point for iteration; save adaptive quantities for sub-

problem.]

Increment m m + 1.

Save a (M-i) , (m-1) .

if a is constrained but not fixed then set aL - max (0.2,bl/;) ,

a u a in (,b2/9).

if i is constrained but not fixed then set nL max (-5,(b3-2 )/s),

Pu- min (5,(b b/s).

Set &-i, ;-O.

Compute and save positive gridpoints {u.j = q/2+i,...,q},

weights {wj2,...,q}, and standardized empirical characteristic

function values { ku 9 )  :=1,... ,q}.

if Formulation B then compute and invert A.

S3 CSubproblem.]

ScIve the optimization problem

mi ((u) - k(u 2 w. (Formulation A)
j=1

or

min wi(ui)- k(u)) AiJ(()- k(u ))w (Formulation B),
i=1 j=1 1 n j n 1

yielding new (c,8,oi).

S4 [Update and test convergence.]

Set + C i s a.

if &=I then set + s8 a log a.



Set ~4

if a and are fixed then error m a (1x -(m-1)

else error max (ja-11,Ii I).

if error e and m<M then go to S2.

S5 "Final estimates.]

Set (aL'paL,Iu) (b1,b2,b3,b4).

if 3=1 then set Z-i -Z log

!1!

Seii/, 4~k/
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STRUCTURE

SUBROUTINE STABLE (X,N,MODE,KSUM,XLAM,TAU,NPTS,TOL,MAXIT,XL,XB,XH,NPAR,
ISCLBD,LOCBND,ICOV,VCVI,VCV2,WORK,LWORK,IWORK,LIWORK,IFAULT)

Formal parameters

X Real array (N) input: sample

N Integer input: sample size

MODE Integer input: formulation; if zero, then
Formulation B is used, else
Formulation A

KSUM Integer input: convolution power k

XLAM Real input: X

TAU Real input:

NPTS Integer input: q

TOL Real input: convergence tolerance

MAXIT Integer input: maximum allowable number of iterations

XL Real array (NPAR) input: lower bounds for parameters ( ,8,aj);
the third and fourth elements change
during execution

output: input values are restored

XH Real array (NPAR) input: upper bounds for parameters; the
third and fourth elements change
during execution

output: input values are restored

NPAR Integer input: number of parameters (4)

ISCLBD Integer input: flag if a is constrained: if
negative, & is fixed at XB(3); if
zero, a is free to vary and initial
values of XL(3) and XH(3) are irrele-
vant; if positive, a is constrained
in [YEL(3),XH(3)]

A/
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LOCBND Integer input: flag if & is constrained: if
negative, u is fixed at XB(); if
zero, is free to vary and initial
values of XL() and XH(M) are irrele-
vant; if positive, is constrained
in EXL(4),XH(4)]

ICOV Integer input: flag for computation of covariance
matrices: if negative, neither
approximation (i) nor (ii) is computed;
if zero, both approximations are computed;
if positive, only approximation (ii) is
computed

VCV1 Real array(NPAR,NPAR) output: covariance matrix approximation i)
if requested; the strict lower
triangle contains correlations, the
upper triangle contains covariances
(times n); if a parameter is on a
bound, the corresponding elements are
zero

VCV2 Real array(NPAR,NPAR) output: covariance matrix approximation (ii)
if requested; the strict lower triangle
contains correlations, the upper triangle
covariances (times n); if a parameter is
on a bound, the corresponding elements
are zero

WORK Real array (LWORK) workspace:

output: some elements may be of interest on
output (see Restrictions)

LWORK Integer input:

IWORK Integer array(LIWORK) wor'..space:

output: some elements may be of interest on
output (ee Restrictions)

LIWORK Integer input:

IVNIT Integer input: if positive, unit number for output
(see Additional Comments); if zero
or negative, no output is produced

IFAULT Integer output: failure indicator

LA
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Failure indicators

IFAULT = 0 indicates success. Nonzero values of IFAULT are due

to two types of errors. The first type is input errors, detected in STABLE;

IFAULT will be

1 if MAXIT0;

2 if N<50 (see Restrictions);

3 if KSUM : 0;

4 if T<0 or T>1 and MODEO;

5 if NPTS<20 or mod(NPTS,2)0;

6 if TOL:-0;

7 if NPAR04;

8 if insufficient workspace was allotted (see Restrictions);

9 if improper bounds were supplied. The following conditions
cause this failure:
XL(i)>XB(i) or XL(i)>XH(i) or XB(i)>XH(i), i=1,2
XL(1)<0 or XH 1)>2
XL(1)<-1 or XH(1)>l
(XL(2)#0 or XH(2)0) and (XL(1)<l and XH(1)-I
or XL(1)W1 and XH(1)>1)
XB( 3):50
ISCLBDO and (XL(3)>XB(3) or XL(3)>XH(3) or XB(3)>XH(3))
ISCLBD<0 and XL(3)XH(3)
LOCBNDO0 and (XL(4)>XB(4) or XL(4)>XH(4) or XB(4)>XH(4))
LOCBND<O and XL(4)$XH(4)
LOCBND$O and XL(1)=XH(1)=1 and (XL(2)$O or XH(2)$O).

On input errors, STABLE terminates immediately, without performing any

computations. The second type of error occurs after some computation.

IFAULT will be

10 if A was found numerically non positive definite;

11 if A was found ill-conditioned;

12 if too many function evaluations were required during solution
of a subproblem;

13 if iteration converged, but
the most recent E04KBF fault indicator was 3 and
internal checks were not met. These checks are
(i) IIGI1 2 < 10 * X02AAF(DUMMY), and
(ii) K < 1/IuGII, as recommended by EO4KBF
documentation, where IG Jis the norm of the projected
gradient and K the estimated condition number of the
projected Hessian matrix;

...L, . _... . . ... -.. ..... .. . -. ... . . .. .. . . . .. . . . .. . . . .. . .. . ... ..-. . . .
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14 if there were repeated problems with overflow in the
Cholesky factors of the projected Hessian;

15 if iteration ccaverged, but
the most recent E04KBF fault indicator was 5 and
internal checks were not met;

16 if convergence did not occur in MAXIT iterations;

17 if convergence did not occur in MAXIT iterations, the
most recent E04KBF fault indicator was 3, and internal
checks were not met;

18 if convergence did not occur in MAXIT iterations, the
most recent E04KBF fault indicator was 5, and internal
checks were not met.

Conditions IFAULT=10 and 11 are detected in SETECF (they are caused by

T being too small under Formulation B), the remainder in STABLE.

IWORK(2) and IWORK(3) (see Restrictions) are failure indicators

for asymptotic covariance matrix versions (i) and (ii) respectively. Zero

indicates success, 1 that H was non positive definite, and 2 that H was

ill-conditioned, the failures detected in SETVCV. If IFAULT=1-12 or

14, covariance matrices are not computed, and their fault indicators are

set to the corresponding value of IFAULT.

Auxiliary algorithms

The user has only to call STABLE. Auxiliary procedures fall into

two groups: those supplied here, and NAG Library procedures. The

following subroutines are supplied:

SUBROUTINE GRIDWT(PAR,NPAR,XLAM,TAU,PTS,NPTS2,WT,NPTS,MODE,KSUM): computes
gridpoints and weights;

SUBROUTINE CHARFN(U,PAR,NPAR,RE,XIM): computes real and imaginary parts
of standard stable characteristic function *(u);

SUBROUTINE FUNCT(IFLAG,N,XC,FC,GC,IW,LIW,W,LW): objective function/gradient
evaluation;
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SUBROUTINE SETECF(X,N,PAR,NPAR,MODE,TAU,SIGMA,XMU,KSUM,IA,NPTS2,NPTS,
PTS,ECF,A,AINV,WORK,IFAULT): computes standardized empirical character-
istic function values ;k(u), computes and inverts A under Formulation B;

SUBROUTINE MONIT( N,XC,FC,GC,ISTATE,GPJNRM,COND,POSDEF,NITER,NF,IW,LIW,
W,LW): monitors the progress of E04KBF;

SUBROUTINE VARIAB(ICOV,X,N,PAR,NPAR,MODE,SIGMA,XMU,ISUB, NVAR,PTS,NPTS2,
WT,ECF,NPTS,DERIV,WORK,HOLD,A,IA,AINV,VCVl,VCV2,H,NVARI,V,IW,LIW,W,LW,
IFAILI,IFAIL2): computes approximate asymptotic covariance matrices;

SUBROUTINE VMATRX (X,N,MODE,XMU,SIGMA,PTS,NPTS2,WT,ECF,WORK,NPTS,DERIV,
V,HOLD,NVAR): computes 7 for version (i) of asymptotic covariance matrix;

SUBROUTINE DAPROD( FAC1,IFAC1,NPTS,FAC2 ,WORK,NVAR): auxiliary matrix
multiplication for VARIAB:

SUBROUTINE HVPROD(FACI,IFAC1,NVAR,FAC2,NPTS,VH,IVH): auxiliary matrix
multiplication for VARIAB;

SUBROUTINE SETVCV(ISUB,NVAR,H,NVAR1,V,WORK,VCV,NPAR,SIGMA,IFAULT):
auxiliary routine for VARIAB;

SUBROUTINE HESDIF(PAR,NPAR,ISUB,H,SAVEI,SAVE2,NVAR,IW,LIW,W,LW): computes
an approximate Hessian by differencing for version i) of asymptotic co-
variance matrix.

The following NAG Library procedures are used:

REAL FUNCTION X02AAF(DUMMY): returns the smallest positive e such that
1.0 + C > 1.0;

SUBROUTINE E0 4KBF(N,FUNCT,MONIT,IPRINT,LOCSCH,INTYPEMINLIN,MAXCAL,ETA,
XTOL,STEPMX,FEST,IBOUND,BL,BU,X,HESL,LH,HESD,ISTATE,F,G,IW,LIW,W,LW,IFAIL):
solves optimization problems. Control parameters are set as follows:

IPRINT = 0

LOCSCH = .TRUE.
INTYPE = 3 for subproblems after the first if parameters which are

not fixed are not on bounds, else 0
MINLIN = NAG Library routine E04LBS
MAXCAL = 400
ETA = 0.9
XTOL = 1O.O'XO2AAF(DUMMY) explicitly, so it is available on exit
STEPMX = 0.25
FEST = 0.0
IBOUND = 0

SUBROUTINE F01ABF(A,IA,N,B,IB,Z,IFAIL): inverts the positive definite
symmetric matrix A;

A
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SUBROUTINE FOCAF(A,M,N,IFAIL): sets matrix A to zero;

SUBROUTINE FO1CMF(A,LA,B,LB,M,N): copies elements of matrix A into
matrix B;

SUBROUTINE FO1CKF(A,B,C,N,IP,M,Z,IZ,IOPT,IFAIL): matrix multiplication
A=BC, where B or C may be overwritten.

RESTRICTIONS

We require the sample size N at least 50, since for smaller samples

in (u) is not generally sufficiently smooth to allow accurate estimation.

Since ; and ; are bounded in the narrow ranges (0,2] and [-I,I and have

standard errors decreasing as N- 3, it is preferable to have NkOO. For

N less than 150, say, relatively large values of X may be preferred, to

damp out noise in in(u). We further require NPTS>20.

Extended work vectors WORK and IWORK are required, in order to

communicate information to FUNCT and MONIT without using COMMON blocks.

To aid readers who may wish to adapt the algorithm to installations not

having the NAG Library, we describe the use of these work vectors.

The required length of WORK is 10 + 11*NPAR + NPAR*(NPAR-1)/2 +

(3 NPAR)*NPTS + NPTS + NPTS/2 if MODE$0, with an additional NPTS*(2"NPTS+l)

required if MODE=O. Some sample lengths are

MODE NPTS=20 NPTS:=40

0 1030 3600
nonzero 210 360

The subvector W is passed to E04KBF,FUNCT, and MONIT.
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The required length of IWORK is 7 + NPAR. The subvector IW is

passed to E04KBF, FUNCT, and MONIT.

IWORK starting point IW starting point Elements Use for

1 1 Iteration count
2 NPAR ISTATE vector for E04KBF,

workspace for VARIAB.
(other addresses If covariance matrices are
internally requested, on exit IWORK(2)
computed) contains a fault indicator

for approximation (i),
IWORK(3) contains a fault

indicator for approximation (ii),
and IWORK(4) contains the
number of iterations required
to compute the approximate
Hessian for approximation (i)

1 2 Workspace for E04KBF, HESDIF
3 1 Stores MODE
4 1 Stores output unit number

IUNIT
5 1 Stores NPTS
6 i Stores 1 less than the

address of PTS(1) in W

PRECISION

Double precision will be required on computers with 32 bit wordlength.

The precision used by the local NAG Library implementation should be ade-

quate. To change the precision:

- change all REAL declarations to DOUBLE PRECISION;
~r 2

reolace constants by double precision versions, constants 2

/10 typed in to machine accuracy;

- declare NAG Library function X02AAF as DOUBLE PRECISION;

- change the precision of FORTRAN library functions, i.e., ABS to
DABS, ATAN2 to DATAN2, SIGN to DSIGN, etc. FLOAT(I) can be replaced by
DBLE(FLOAT(I)).
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If extremely large observations are present in the sample, there

may be a loss of significant figures when computing sines and cosines

in SETECF and VMATRt. This should not occur when real data is used,

but can be a problem with simulated data for small a.

TI ME

Execution times depend on the quality of initial guesses and

properties of the real data used, and vary somewhat throughout the para-

meter space. As a rough guide, we give some statistics for simulated

data, using a moderately difficult situation with a>1. Tables la and lb

provide approximate running times for Formulation A, q=40, and Formulation

B, q=20, n=1O0,200,500,1000,2500. Timing starts upon entry to STABLE.

Samples from S~l.3,-.5,3,15) were generated using the method of Chambers,

Mallows, and Stuck (1976). Initial guesses for a,8,a,u in all cases were

1505=1(l.01+2), 0, (x 5 -x )2,~ and x5  the sample median, respectively.

Because of skewness, the median is not a good estimator of W in this

case. Five iterations were used. Time required to compute asymptotic

covariance matrices includes approximations (i) and (ii), except where

noted. Timings are for a double precision version of the algorithm,

compiled by the IBM FORTRAN H Extended compiler, and run on an IBM 370/3033.

The following qualitative points are clear from this rather restricted

set of timings. There is a substantial overhead, which may crudely be

assumed fixed, associated with nonlinear optimization, although E04KBF solves

the optimization subproblems rapidly. For large samples, run time is

dominated by evaluation of the empirical characteristic function, and

thus is asymptotically linear in n for a fixed number of iterations.



Table la

Timings for Formulation A, q=40, on Simulated Samples

from s(1.3,-.5,3,15); X=1 for nS200 and .5 for n>200, r=1

Estimation Convergence Covariance
n Iterations time (sec) criterion matrix time

100 5 0.7 5.L4(-4) 0.1*
200 5 1.0 2.3(-2) 0.1*
500 5 1.8 1.8(-4) 0.8
1000 5 3.2 3.3(-5) 1.2
2500 5 7.5 4.8(-6) 2.5

*Sample size too small to compute approximation (i), only
approximation (ii) computed.

Table lb

Timings for Formulation B, q=20, on Simulated Samples

from s(1.3,-.5,3,15); X=T=O

Estimation Convergence Covariance
n Iterations time (sec) criterion matrix time

100 5 0.9 1.2(-2) 0.3
200 5 1.2 3.2(-2) 0.4
500 5 1.6 1.8(-4) 0.5
1000 5 2.3 5.7(-5) 0.7
2500 5 4.4 1.5(-4) 1.4
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Approximation (ii) of the asymptotic covariance matrix is quite easy to

compute, while approximation Ci) is highly time-consuming.

For fixed k>1 with the k-sum procedure, one iteration generally

suffices, provided estimates from the nearest value of k are used, and

the estimates don't change much. For mixtures of very different distri-

butions, or if the exponent & is near unity, more are required.

ADDITIONAL COMMENTS

Although output need not be produced, we recommend calling STABLE

with IUNIT>O, so the user will have a record of how estimation progressed.

The following information will then be printed out:

by MONIT: number of E04KBF iterations and function evaluations, objective
function value, norm of projected gradient, subproblem solution,
projected gradient, and estimated condition number of projected
Hessian;

by STABLE: E04KBF fault indicator, and value of convergence criterion;

by HESDIF(if called): number of iterations needed to compute approximate

Hessian, and steplength used.

Use of STABLE in "batch mode" has drawbacks. For instance, most

faults arising in E04KBF are not diagnosed until iteration ceases. In

practice, such faults may likely be due to the initial &i being on the

wrong side of 1. Further, when & is small, convergence tolerances are

difficult to interpret, and the user may prefer direct control of iteration.

We therefore prefer to use STABLE interactively, a copy of the output

described above being directed to the terminal, and the user deciding

after each iteration whether he wishes to continue. Required modifications

are simple.
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Faster and/or more compact codings of the Algorithm are possible,

for instance, if B is known to be zero, if only Formulation A or Formulation

B is desired, or if asymptotic covariance matrices are not desired.

Generality is achieved at a price in efficiency.
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This paper presents several families of algorithms for estimation of the
parameters of the stable laws and the parameters of attracting stable laws.
The paper also presents algorithms for estimation of the parameters of stable
regression and stable autoregression models.
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